

RESTRICTED
FOR USE BY EDUCATION OFFICERS ONLY

COMPUTING
TEACHING AND LEARNING SYLLABUS

Secondary

G3

Syllabus 7155

Year of Implementation:
From 2024 with Secondary Three Cohort

© 2024 Curriculum Planning and Development Division.
This publication is not for sale. Permission is granted to reproduce this
publication in its entirety for personal or non-commercial educational use
only. All other rights reserved.

Updated: April 2024

RESTRICTED
FOR USE BY EDUCATION OFFICERS ONLY

G3 COMPUTING
TEACHING AND LEARNING SYLLABUS
For implementation in 2024
First year of examination in 2025

Computer Education Unit
Sciences Branch
Curriculum Planning and Development Division
Ministry of Education
Singapore

CONTENTS

Page

1. INTRODUCTION

• Value of Computing

• Curriculum Framework

• Aims of the Syllabus

• 21st Century Competencies (21CC)

2

2

4

4

2. CONTENT

• Overview of Content

• Module 1: Computing Fundamentals

• Module 2: Algorithms and Programming

• Module 3: Spreadsheets

• Module 4: Networking

• Module 5: Impact of Computing

10

10

11

15

17

20

3. PEDAGOGY

• Pedagogical Approaches

• Performance Tasks

• Software

24
29
30

4. ASSESSMENT

• Assessment for Computing

• School-based Assessment

• National Examination

32

 32
33

1

SECTION 1:
INTRODUCTION

Value of Computing

Curriculum Framework
Aims of the Syllabus

21st Century Competencies (21CC)

2

1. INTRODUCTION

Value of Computing

The fourth industrial revolution, driven by the rapid advancement of technology and growing
capabilities of Artificial Intelligence (AI), has brought about significant changes in almost every
business sector worldwide. To survive in this digital age, companies must undergo digital
transformation and Singapore must maintain a robust pipeline of technology professionals.
Computing subjects provide upstream support for this effort by providing students with
opportunities to explore the field and satisfy their natural curiosity about the technology
around them. Students who offer Computing develop Computational Thinking skills that will
be relevant in whatever fields or careers they pursue and G3 Computing, with its coverage of
text-based coding and basic AI algorithms, is tailored for talented or passionate students who
may wish to pursue computing-related studies or careers in the future.

Curriculum Framework

The design of G3 Computing is guided by the Computing Curriculum Framework which was
revised in 2017. See Figure 1. It consists of the following:

• Vision statement for computing education
• Dimensions of computing
• Core Concepts of computing
• Components of computational thinking (CT)
• Practices of computing practitioners and professionals

Figure 1: Computing Curriculum Framework (2017)

3

An important aspect of the framework is the relationship between the Core Concepts,
Computation Thinking and Practices: Core Concepts and Computational Thinking are applied
through the Practices, and the Practices will in turn deepen one’s understanding of the Core
Concepts.

Table 1 shows the alignment between G3 Computing topics and the Core Concepts in the
Computing Curriculum Framework.

Table 1: Alignment of G3 Computing topics with the Core Concepts in the Framework

Core Concepts Topics in G3 Computing

Computer Systems Computer architecture, data representation and logic gates

Computer Networks
Types of networks, protocols, error detection, home
networks and security

Data and Analysis Data processing and analysis using spreadsheet software

Algorithms and Programming
Python programming, testing, debugging, algorithm design
and software engineering

Application and System Software
Application software (spreadsheet and programming
software)

Impact of Computing
Intellectual property, online falsehoods and emerging
technologies (e.g., AI)

Table 2 shows the alignment between G3 Computing tasks and the Practices in the Computing
Curriculum Framework.

Table 2: Alignment of tasks in G3 Computing with the Practices in the Framework

Practices Tasks in Computing

Understanding Computational
Problems

Students understand and identify key information about a
complex problem.

Creating Computational Artefacts
Students design and create computational artefacts such as
programs and spreadsheets.

Evaluating Computational Artefacts
Students test, evaluate and improve computational
artefacts (incl. debugging and refining programs).

Communicating and Collaborating
Students work collaboratively in pairs or small groups to
solve problems and describe / document their solutions.

4

Aims of the Syllabus

The G3 Computing syllabus aims to provide students with the foundation to continue with
further studies in computing and skills to participate in a rapidly changing technological
environment so that the concepts and skills learnt would also be applicable in other fields
that require computing. Specifically, the syllabus aims to enable students to:

1) Acquire knowledge and understanding of core areas in computing covering concepts of

logic, algorithms, data analysis, data representation and networking;

2) Develop and apply computational thinking skills such as abstraction and decomposition
to solve real-world problems by designing, writing, testing and debugging programs
using a personal computer;

3) Develop an appreciation of computing as a dynamic and creative field including
awareness of recent developments in computer systems;

4) Develop an understanding of the social, ethical, legal and economic implications of
computing; and

5) Develop attitudes and 21CC needed to do well in computing such as inventive thinking,
perseverance, collaboration, communication as well as striving for accuracy and
thoroughness.

21st Century Competencies (21CC)

The Framework for 21st Century Competencies and Student Outcomes (“21CC Framework”)
in Figure 2 shows how Core Values, Social-Emotional Competencies, and Emerging 21st
Century Competencies support the realisation of MOE’s Desired Outcomes of Education.

Figure 2: Framework for 21CC and Student Outcomes

5

Table 3 illustrates how the G3 Computing curriculum is aligned with the Learning Goals and
Developmental Milestones for Emerging 21CC. Core Values such as responsibility and
resilience are fostered through the ‘problem-driven’ pedagogical approach (see Section 3).
Social and Emotional Competencies are developed when students work collaboratively on
different tasks.

Table 3: Alignment with Learning Goals and Developmental Milestones

Critical, Adaptive and Inventive Thinking (CAIT)
G3 Computing Competencies and

Attitudes

Learning Goal
21CC Developmental Milestone

(By end of S4)

Understanding Computational
Problems

Creating and Evaluating
Computational Artefacts

CAIT 1: Exercises
sound reasoning
and decision-
making

1.4: The student can use evidence
and adopt different viewpoints to
explain their reasoning and
decisions, having considered the
implications of the relationship
among different viewpoints.

Ability to:

• apply computational thinking and
logical reasoning in the design and
implementation of computational
artefacts.

CAIT 2: Uses
metacognition to
enhance, monitor
and regulate
thinking

2.4: The student can plan, organise
and evaluate their thinking
strategies to monitor their
learning. They suspend judgement,
reassess conclusions and consider
alternatives to refine their
thoughts, attitudes, behaviour and
actions.

Ability to:

• persevere in creating
computational artefacts despite
challenges (e.g., not giving up
when their computer programs do
not work).

CAIT 3: Assesses
different contexts
and situations in
order to make
connections and
draw new insights

3.4: The student can draw on the
similarities and differences
between different contexts or
situations to extract new insights
to inform their perspective or
approach.

Ability to:

• recognise when a new problem is
similar to an existing problem that
has been encountered before and
adapt the corresponding solution
to solve the new problem.

CAIT 4: Manages
complexities and
ambiguities by
adjusting one’s
perspective and
strategies

4.4: The student can draw on
different perspectives and
strategies to adjust their approach
when required, adapting learnt
knowledge and skills in new and
unexpected contexts to solve
complex and unexpected
problems.

Ability to:

• identify the key information about
a complex task; and

• analyse and break down a
complex computational problem
into manageable parts.

CAIT 5: Explores
possibilities and
generates novel
and useful ideas
with curiosity and
openness

5.4: The student can generate
ideas that are unique or modified
substantially from existing ones
and explore different pathways
that lead to solutions.

Ability to brainstorm ideas to solve
problems and explore different
plausible solutions.

6

CAIT 6: Evaluates
and refines ideas to
formulate novel
and useful
situations

6.4: The student can evaluate and
refine their ideas iteratively, using
relevant strategies and based on a
set of criteria that is appropriate
for the task or context.

Ability to:

• design test cases and evaluate
solutions using them; and

• debug and refine computer
programs.

Communication, Collaboration and Information (CCI)
G3 Computing Competencies and

Attitudes

Learning Goal
21CC Developmental Milestone

(By end of S4)
Communicating and Collaborating

CCI 1: Effectively
communicates
information and
co-constructs
meaning

1.4: The student can convey and
critically evaluate knowledge to co-
construct new understandings and
complex ideas persuasively and
with impact, while considering the
specific purpose and context of
communication.

Ability to:

• explain and justify the
appropriateness of their
computational designs and
choices; and

• describe the features and
operation of their computational
artefacts.

CCI 2: Engages
empathetically
with diverse
perspectives

2.4: The student can respond with
respect and empathy. The student
is sensitive to the diverse
backgrounds that influence the
context of communication with
others.

Ability to:

• consider different perspectives
when working with others to solve
computational problems; and

• reach compromises or consensus
with stakeholders and/or other
developers to pursue a shared
goal as part of the software
engineering process.

CCI 3: Interacts and
works effectively in
group settings to
contribute to
shared goals

3.4: The student can mediate
conflict and disagreement,
reaching compromises or
consensus for collective decisions
to meet shared goals.

CCI 4: Collectively
defines and
negotiates the
roles and tasks
determined by the
group to achieve its
goals

4.4: The student can reflect on
their working relationships with
the group and adapt to contribute
to the shared goals, as determined
collectively by its members.

CCI 5: Employs
effective strategies
to locate digital
and non-digital
information and
resources, and
exercises
discernment by
evaluating the
accuracy,
credibility, and

5.4 The student can refine search
results, organise information
systematically and manage
information sensitively, and
evaluate the accuracy, credibility
and relevance of information

Ability to:

• understand the concept of privacy
and take measures to enforce the
privacy of personal data; and

• understand the factors that lead
to online falsehoods as well as to
identify and defend against them.

7

relevance of
information

CCI 6: Creates and
shares digital and
non-digital
information
ethically and
responsibly, and
maintains a
positive online
presence

6.4: The student can contribute to
information and perspectives
shared in constructive and ethical
ways, and manage their online
reputation and relationships
responsibly.

Ability to:

• understand copyright issues and
intellectual property rights; and

• understand threats to security and
defend against them.

Civic, Global and Cross-Cultural Literacy (CGC)
G3 Computing Competencies and

Attitudes

Learning Goal
21CC Developmental Milestone

(By end of S4)

Understanding Computational
Problems

Communicating and Collaborating

CGC 1:
Demonstrates
understanding of
values, ideals and
issues of personal,
community and
national
significance

1.4: The student can explain,
analyse, evaluate, and construct
new understandings of issues that
affect the culture, social and
economic development,
governance, future and identity of
Singapore. The student can
manage tensions among multiple
perspectives to work towards a
common good.

Ability to recognise and state how the
use of computers and ICT has
impacted society and the way people
live and work in Singapore.

CGC 2: Plays active
and constructive
roles to improve
the school,
community and
nation

2.4: The student can independently
identify appropriate and
constructive steps to address
issues, and initiate, plan and
organise programmes with others
that contribute to school,
community and/or nation. The
student can describe the rights and
responsibilities of Singapore
citizens and evaluate the
complementary civic roles played
by individuals, groups,
organisations and government.

Ability to:

• identify ways that computing and
technology may address issues in
the school, community and/or
nation; and

• prototype or communicate
possible solutions.

CGC 3: Aware of
global issues,
interconnections,
and trends, and
forms informed
perspectives on
them

3.4: The student can actively find
out about global issues, analyse
them and discern their implications
for Singapore and other countries.

Ability to show awareness of how the
global issues of social media, AI and
emerging technologies impact
Singapore and other countries.

CGC 4: Interacts
confidently with

4.4: The student can interact
respectfully and confidently with

Ability to:

8

people from
Singapore and
beyond on
different platforms,
including digital
ones, in response
to global issues

people from Singapore and other
countries on various platforms to
discuss global issues and
recommend appropriate actions to
address them.

• explain Singapore’s approach to
enforcing privacy and defending
against online falsehoods (e.g.,
PDPA, POFMA); and

• appreciate how Singapore’s
approach is like or different from
the approach taken by other
countries and cultures CGC 5: Aware of

and appreciates
the cultural
background and
identity of self and
others

5.4: The student can appreciate the
value of a diversity of cultural and
religious communities’ heritage,
customs, perspectives, and
contributions, and identify
commonalities between one’s own
and other cultures.

CGC 6 Shows
sensitivity and
openness in
interactions with
people from
diverse social,
cultural and
religious
communities to
promote social
cohesion

6.4: The student can demonstrate
appropriate skills and behaviour to
work together with people from a
diverse range of social, cultural and
religious backgrounds within and
beyond Singapore, and contribute
to promoting social cohesion.

9

SECTION 2:
CONTENT

Overview of Content

Module 1: Computing Fundamentals
Module 2: Algorithms and Programming

Module 3: Spreadsheets
Module 4: Networking

Module 5: Impact of Computing

10

2. CONTENT

Overview of Content

The syllabus consists of five modules as follows:

Module 1 Computing Fundamentals

Module 2 Algorithms and Programming

Module 3 Spreadsheets

Module 4 Networking

Module 5 Impact of Computing

The learning outcomes are shown in the following pages.

Module 1: Computing Fundamentals

1.1: Computer Architecture

Students should be able to:

1.1.1 Perform calculations using bits, bytes, kilobytes, kibibytes, megabytes, mebibytes,

gigabytes, gibibytes, terabytes, tebibytes, petabytes and pebibytes.

1.1.2 Describe the function of key components of a computer system: its processor,

main memory and secondary storage.

1.1.3 Describe the function of data and address buses in reading from and writing to

memory.

1.1.4 Describe different input/output interfaces (USB, HDMI and PCI Express) in terms

of typical applications, connectors and speed.

1.1.5 Describe the use of magnetic, optical and solid-state media for secondary storage

in terms of durability, portability, typical capacities, cost and speed.

1.2: Data Representation

Students should be able to:

1.2.1 Represent positive whole numbers in binary form.

11

1.2.2 Convert positive whole numbers from one number system to another - binary,

denary and hexadecimal; and describe the technique used.

1.2.3 Use two’s complement for a fixed number of bits to represent both positive and

negative whole numbers in binary.

1.2.4 Use the example of an 8-bit extended ASCII encoding for English text to explain

how information can be represented as bits for storage or processing by a

computer.

1.3: Logic Gates

Students should be able to:

1.3.1 Represent logic circuits using either logic circuit diagrams or Boolean statements

and convert between the two representations.

1.3.2 Construct the truth table for a given logic circuit (maximum 3 inputs) and vice

versa.

1.3.3 Draw symbols and construct truth tables for AND, OR, NOT, NAND, NOR and XOR

logic gates.

1.3.4 Manipulate Boolean statements using the associative and distributive properties

of certain logical operators and De Morgan’s theorem.

1.3.5 Solve system problems using combinations of logic gates (maximum 3 inputs).

Module 2: Algorithms and Programming

2.1: Problem Analysis

Students should be able to:

2.1.1 For a given problem, identify and remove unnecessary details to specify the:

• inputs and the requirements for valid inputs

• outputs and the requirements for correct outputs.

2.2: Constructs

Students should be able to:

2.2.1 Interpret flowcharts to understand the sequence, selection and iteration

constructs.

12

2.3: Python Code

Students should be able to:

2.3.1 Use variables to store and retrieve values.

2.3.2 Use literals to represent values directly in code without using a variable.

2.3.3 Use the built-in functions: input() and print(), to perform interactive input/output

using the keyboard and screen.

2.3.4 Use the open() built-in function as well as the read(), readline(), write() and close()

methods to perform non-interactive file input/output.

2.3.5 Use the import command to load and make additional variables and functions

available for use.

2.3.6 Use Boolean values with the operators: or, and, not.

2.3.7 Use integer and floating-point values with appropriate operators and built-in

functions (limited to those mentioned in the Quick Reference Guide) to perform:

• Addition, subtraction, multiplication, division, modulo and exponentiation

• Rounding (normal, up, down, towards zero)

• Calculation of square roots

• Generation of ranges

• Generation of random integers / floats

• Conversion to and from strings

2.3.8 Use string values with appropriate operators, built-in functions and methods

(limited to those mentioned in the Quick Reference Guide) to perform:

• Concatenation and repetition

• Extraction of characters and substrings (i.e., indexing and slicing)

• Conversion to upper and/or lower case

• Conversion of single characters to and from ASCII

• Testing of whether characters are letters only, lower-case letters only, upper-

case letters only, digits only, spaces only and/or alphanumeric

• Testing of whether the string contains a substring

• Testing of whether the string starts with and/or ends with a substring

• Searching for the location of a substring

• Splitting of string into list of substrings based on either whitespace or a given

delimiter

• Calculation of length

• Output formatting

13

2.3.9 Use list values with appropriate operators, built-in functions and methods (limited

to those mentioned in the Quick Reference Guide for Python) to perform:

• Concatenation and repetition

• Extraction of single items and subset of items (i.e., indexing and slicing)

• Testing of whether an item is in the list

• Calculation of length

• Calculation of sum, minimum value and maximum value (provided the list

items are all integer or floating-point values)

2.3.10 Use dictionary values with appropriate operators to perform dictionary insertion,

query, lookup and deletion.

2.3.11 Use the if, elif and else keywords to implement selection constructs.

2.3.12 Use the for and while keywords to implement iteration constructs.

2.3.13 Write and call user-defined functions that may accept parameters and/or provide

a return value.

2.3.14 Distinguish between the purpose and use of local and global variables in a

program that makes use of functions.

2.4: Testing and Debugging

Students should be able to:

2.4.1 Produce a trace table by performing a manual dry run and inspecting the value of

variables at each step of a program.

2.4.2 Inspect the value of variables at selected steps of a program by inserting print

statements.

2.4.3 Locate logic errors by backtracking from a point where unexpected behaviour is

observed.

2.4.4 Test programs incrementally as small additions and changes are made during

development.

2.4.5 Test small parts of a program by commenting out other parts of the program that

are not needed for testing.

2.4.6 Justify the use of data validation and identify the appropriate action to take when

invalid data is encountered: asking for input again (for interactive input) or exiting

the program (for non-interactive input).

14

2.4.7 Validate input data for acceptance by performing:

• length check,

• range check,

• presence check,

• format check,

• existence check (i.e., checking for whether input data is already in the

system), and/or

• calculation of a check digit

2.4.8 Understand and describe types of program errors: syntax, logic and run-time; and

explain why they occur.

2.4.9 Design appropriate test cases to cover normal, error and boundary conditions and

specify which type(s) of conditions is/are being tested for each test case.

2.5: Algorithm Design

Students should be able to:

2.5.1 Explain and use the algorithms for:

• Obtaining the minimum or maximum value(s) in a list without using the min()

or max() functions

• Calculating the sum or average of values in a list without using the sum()

function

• Searching for the location(s) of an item in a list or a character in a string

without using the index() or find() methods

• Extracting items from a list or characters from a string based on a given

criteria

• Splitting a string into a list based on a given delimiter without using the split()

method

2.5.2 Solve problems by breaking them down into smaller and more manageable parts

(modular approach).

2.5.3 Solve problems by solving a small version of the problem and gradually extending

the solution to bigger versions of the problem (incremental approach).

2.5.4 Use the technique of solving many small instances of a problem manually to

identify the generic steps that are needed to solve the problem in general.

2.5.5 Recognise when a new problem is similar to an existing problem that has been

encountered before and adapt the corresponding solution to solve the new

problem.

15

2.6: Software Engineering

Students should be able to:

2.6.1 Understand and describe the stages in developing a program: gather

requirements, design solutions, write code, test and refine code, deploy code.

2.6.2 Recognise that the sequence of software development stages may not be linear

and the use of iterative development may sometimes be more appropriate.

Module 3: Spreadsheets

3.1: Program Features

Students should be able to:

3.1.1 Use appropriate relative, absolute and mixed cell references in formulas so they

give the correct results when copied to similar cells in a table.

3.1.2 Use the Goal Seek feature to determine the value needed in a cell for another cell

to reach a specified target value.

3.1.3 Use the Conditional Formatting feature to automatically update cell formatting

based on one or more rules.

3.2: Functions

Students should be able to:

3.2.1 Use logical functions to perform:

• Logical OR, AND or NOT

• Selection between two values based on a third logical value

3.2.2 Use mathematical and statistical operators and functions to perform:

• Addition, subtraction, multiplication, division, modulo or exponentiation

• Rounding (normal, up, down)

• Calculation of square roots

• Calculation of sums (normal, with condition)

• Calculation of average (normal, with condition)

• Calculation of median, mode, minimum value or maximum value

• Calculation of a value’s rank (ascending, descending)

• Calculation of n-th largest or smallest value

• Counting of values (numbers only, blank only, non-blank only, with condition)

16

• Generation of random numbers

3.2.3 Use text functions to perform:

• Extraction of characters from the left end, middle or right end of text

• Calculation of text length

• Concatenation of texts

• Calculation of the first position of one text within another text (case sensitive,

case insensitive)

3.2.4 Use lookup functions to perform:

• Lookup of values from an unsorted vertical or horizontal table using exact

matching

• Lookup of values from a sorted vertical or horizontal table using approximate

matching

• Classification of values based on range using approximate matching and a

secondary table

• Lookup of values at the intersection of a particular row and column of a cell

range

• Calculation of the relative position of a value in a cell range

3.2.5 Use date functions to perform:

• Determination of the current date or the current date and time

• Calculation of the number of days between two dates

The examinable spreadsheet operators and functions are as follows.

Operator Meaning

+ Addition

− Subtraction or Negation

∗ Multiplication

/ Division

% Percent

^ Exponentiation

= Equal to

> More than

>= More than or equal to

< Less than

<= Less than or equal to

<> Not equal to

& Concatenates two values to produce one continuous text value

17

Category Function(s)

Date and Time DAYS, NOW, TODAY

Text CONCAT, FIND, LEFT, LEN, MID, RIGHT, SEARCH

Logical AND, IF, NOT, OR

Lookup HLOOKUP, INDEX, MATCH, VLOOKUP

Mathematical CEILING.MATH, FLOOR.MATH, MOD, POWER, QUOTIENT, RAND,

RANDBETWEEN, ROUND, SQRT, SUM, SUMIF

Statistical AVERAGE, AVERAGEIF, COUNT, COUNTA, COUNTBLANK, COUNTIF,

LARGE, MAX, MEDIAN, MIN, MODE.SNGL, RANK.EQ, SMALL

Module 4: Networking

4.1: Concepts

Students should be able to:

4.1.1 Define computer networks as systems of two or more computers connected by a

transmission medium for the exchange of data.

4.1.2 Describe the difference between wired and wireless transmission media and

explain the factors that will determine the use of each medium.

4.1.3 Differentiate between Local Area Networks (LANs) and Wide Area Networks

(WANs) based on their geographical scope.

4.1.4 Compare and contrast the client-server and peer-to-peer network architectures in

terms of purpose, organisation and bandwidth.

4.1.5 Identify and state common applications of star and mesh topologies in a home

network.

4.1.6 Define protocols as standards and rules that govern communication over a

network.

4.1.7 Explain that LANs typically use protocols where data is transmitted as individual

packets.

4.1.8 Explain the use of parity, checksums, echo checks and automatic repeat requests

for detecting errors in packet transmission.

18

Home Networks and the Internet

Students should be able to:

4.1.9 Explain that home networks are examples of LANs and that the internet is an

example of a WAN that is formed by connecting many different LANs from around

the world together.

4.1.10 Explain that modems are used to provide internet access by converting from the

protocols used by an Internet Service Provider (ISP) to the protocols used by LANs.

4.1.11 Explain that computers use network interface controllers to communicate via

different transmission media.

4.1.12 Explain that Media Access Control (MAC) addresses are used by network interface

controllers, network switches and wireless access points to direct data within the

same LAN while Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6

(IPv6) addresses are used by routers to direct data across different LANs.

4.1.13 Compare and contrast MAC, IPv4 and IPv6 addresses in terms of purpose, bit

length, degree of permanence and typical representation formats.

4.1.14 Connect a router, a switch and a wireless access point to a modem correctly such

that multiple computers form a LAN that can access the internet via wired and

wireless transmission media.

4.2: Security and Privacy

Students should be able to:

4.2.1 Compare and contrast security and privacy in terms of what kind of data is being

protected, what the data is being protected from and how that protection is

enforced.

4.2.2 Explain how human actions threaten security and privacy by causing data

corruption (through physical or non-physical means) or exposure of private data.

4.2.3 Explain how anti-malware programs enforce security and privacy by preventing

malware from running and removing malware that may be present on a

computer.

4.2.4 Explain how firewalls enforce security and privacy by using either hardware or

software to monitor packets and decide which packets should be permitted or

blocked based on a set of configurable rules.

19

4.2.5 Explain how encryption enforces security and privacy by making encrypted data

appear meaningless without the corresponding secret key.

4.2.6 Explain how the Personal Data Protection Act (PDPA) enforces privacy by legally

requiring that organisations do the following when collecting personal data:

• seek consent from the individual;

• disclose the purpose for collecting data when seeking consent; and

• retain the data for only as long as necessary to fulfil the stated purpose

4.2.7 Explain how adware threatens security and privacy by installing itself without the

user’s knowledge and displaying unwanted advertisements.

4.2.8 Explain how spyware threatens security and privacy by secretly collecting

personal information and transmitting this information to attackers without the

user’s knowledge.

4.2.9 Explain how cookies are typically not malicious but can threaten privacy by

tracking a user’s browsing history across multiple web sites.

4.2.10 Explain how phishing threatens security and privacy by using emails and fake

websites that appear to be from reputable companies to steal personal

information.

4.2.11 Explain how pharming threatens security and privacy by intercepting requests to

legitimate websites and redirecting them to fake websites while still appearing to

use the same address as the legitimate website.

4.2.12 Describe good computing practices that can mitigate the threats posed by

adware, spyware, cookies, phishing, pharming and human actions.

4.2.13 Analyse the effects of anti-malware programs, firewalls, encryption and the PDPA

against the threats posed by adware, spyware, cookies, phishing, pharming and

human actions.

20

Module 5: Impact of Computing

5.1: General

Students should be able to:

5.1.1 Give examples of the impact of computers in the following industries:

• Communication: ability to connect people and businesses over long distances

• Education: easy access to online classes and large amounts of information via

the internet

• Transportation: widespread access to navigational services via Global

Positioning System (GPS) and emergence of self-driving vehicles

• Retail: more reliable tracking of available stock and emergence of self-

checkout counters

5.2: Intellectual Property

Students should be able to:

5.2.1 Define intellectual property as creations of the mind that have value but can exist

purely as data.

5.2.2 Describe copyright as the legal right of owners to control the use and distribution

of their intellectual property under the Copyright Act.

5.2.3 Explain that copyright owners can grant a license to authorise or forbid the use

and distribution of their intellectual property under certain conditions.

5.2.4 Identify computer programs as an example of intellectual property and distinguish

between proprietary software, freeware, shareware as well as free and open-

source software (FOSS) based on their licenses.

5.2.5 Recognise software piracy as the illegal use and distribution of copyrighted

computer programs in a manner that is forbidden by their license.

5.3: Communication

Students should be able to:

5.3.1 Explain why the promotion of social media posts based on engagement rate helps

to deliver relevant content to users but can also lead to the proliferation of

falsehoods.

21

5.3.2 Explain how the Protection from Online Falsehoods and Manipulation Act

(POFMA) enables the government to tackle the spread of fake news by:

• establishing fines and/or prison terms for engaging in prohibited activities;

• optionally requiring offenders to put up a correction notice or to take down

the falsehood; and

• identifying sites that repeatedly spread falsehoods.

5.4: Emerging Technologies

Students should be able to:

5.4.1 Describe Artificial Intelligence (AI) as the ability of a computer to perform complex

tasks without constant human guidance and improve its performance as more

data is collected.

5.4.2 Give examples of common personal and business tasks that can be performed

well by AI: face recognition, voice recognition, image classification and spam

filtering.

5.4.3 Define Machine Learning (ML) as a technique used in AI and explain the difference

between ML and traditional programming.

5.4.4 Use the nearest neighbour method for a classification task with two quantitative

features to demonstrate the basic principles behind ML.

5.4.5 Explain how unethical use of AI or using AI with biased data can lead to negative

consequences.

5.4.6 Show an awareness of emerging technologies.1

1 This is a non-examinable Learning Outcome.

22

Curriculum Time

The total curriculum time for G3 Computing is 46 weeks with 3 hours per week (138 hours)
over 2 years. A summary of the estimated number of hours for the topics or content
explications per module is provided in Table 4.

Table 4: Curriculum Time per Module

Module Topics Hours

1 Computing Fundamentals 1.1 Computer Architecture 3.5

1.2 Data Representation 4

1.3 Logic Gates 7

2 Algorithms and Programming 2.1 Problem Analysis 2

2.2 Constructs 2

2.3 Python code 32.5

2.4 Testing and Debugging 11

2.5 Algorithm Design 8

2.6 Software Engineering 2

3 Spreadsheets 12

4 Networking 4.1 Concepts 12

4.2 Home Networks and the Internet 3.5

4.3 Security and Privacy 5

5 Impact of Computing 5.1 General 3

5.2 Intellectual Property 2

5.3 Communication 1.5

5.4 Emerging Technologies 9

6 Programming Project 18

Total 138

23

SECTION 3:
PEDAGOGY

Pedagogical Approaches

Performance Tasks
Software

24

3. PEDAGOGY

Pedagogical Approaches

The central pedagogical approaches adopted for G3 Computing are the ‘learning through
doing’ and ‘problem-driven’ approaches. See Table 5 for the key features.

Table 5: Key features of ‘learning through doing’ and ‘problem-driven’ approaches

Learning through Doing Problem-driven

Students design and create computational
artefacts.

Students work on problems which are based on
authentic contexts.

Students work collaboratively to design and
generate solutions to tasks/problems.

Students understand and identify key information
from the description of a computation problem.

Students examine computer programs (i.e.
lines of codes) to identify bugs and correct
them.

Students solve problems systematically by using
decomposition and generalisation.

Table 6 provides examples of teaching actions/considerations for Computing and how they
are aligned to the Singapore Teaching Practice (STP)2.

Figure 2: Singapore Teaching Practice

2 The STP covers different aspects of teaching which teachers can adopt for the teaching of G3 Computing.
Visit https://go.gov.sg/stp for more information.

25

Table 6: Teaching Actions/Considerations applicable to the teaching of G3 Computing

Teaching Process: Lesson Preparation

Teaching Area
Teaching

Actions/Considerations
Description/Examples

Selecting and sequencing
content

Put code reading before code
writing

Reading helps students
become familiar with basics of
code and how it is structured
before they attempt to write
their own code. This helps to
avoid common mistakes and
develop better coding habits.

Sequencing learning Give beginners a template

Beginners are often
intimidated if they must start
from scratch. Providing
beginners with a template or
using generative AI as a
starting point can facilitate
success and prepare students
for the next phase.

Deciding on teaching aids and
learning resources

Use unplugged or kinaesthetic
activities

Unplugged or kinaesthetic
activities can help students
understand abstract concepts
by making them more
concrete and tangible. These
activities can also be more
engaging and fun, which can
help students stay motivated
and interested in the subject.

Deciding on instructional
strategies

Practice live coding

Live coding can help students
see how a more experienced
programmer thinks and works
through problems in real-time.
This can also help students
learn how to debug code and
develop better problem-
solving skills.

Use pair programming

Pair programming can help
students learn from each other
and develop better
communication and
collaboration skills. It can also
help students learn how to
give and receive feedback.

26

Teaching Process: Lesson Enactment

Teaching Area
Teaching

Actions/Considerations
Description/Examples

Providing Clear Explanation

Demonstration

Teachers demonstrate a ‘walk
through’ of a new skill during
which students learn by
observing.

Teachers practice ‘live coding’
by explaining each step of
code as it is written:

• Students can see how
teachers solve a problem.

• Students get to see
teachers make mistakes
and see how they debug.

• It slows teachers down
thus giving time for
students to process new
knowledge.

Model Thinking Aloud
Teachers make thinking visible
by verbalising and making
explicit their thinking so that
students can follow the
teachers’ thought processes.

• Teachers think out loud
and verbalise their thought
processes (e.g. “What are
the inputs to this
problem?”, “What should
happen if the string is
empty?”).

• Teachers step through a
program line-by-line to
explain how each line of
code is executed (i.e., code
tracing).

Using Questions to Deepen
Learning

Initiate-Response-Feedback
Chains

Teachers use questions to
elicit, probe and scaffold
students’ thinking.

Teachers ask questions such as
“What makes you say that?”
after students have given a
response to help students
identify the basis for their
thinking as they elaborate on
the reasoning behind their
responses.

Encouraging Learner
Engagement

Explore, Engage, Apply

Teachers design learning
activities that are meaningful
and relevant to students.

Use of kinaesthetic and
unplugged activities to explain
computer or programming
concepts, e.g., Students can
act out the actions indicated
by the loops and instructions
in a program.

Engagement through
Collaboration and
Interactivity

In pair programming, the
driver writes the program

27

Teachers assign students to
work collaboratively in pairs.
One student (the driver) has
control of the keyboard and
mouse, while the other (the
navigator) looks at the big
picture and provides
comments. Students are to
switch roles from time to time.

while the navigator considers
the requirements and checks
for errors.

Facilitating Collaborative
Learning

Think-pair-share

Students first think through a
problem alone and then
discuss in pairs. This is
followed by consolidation led
by teacher with the whole
class.

Students consider possible
solutions to a theory question
(e.g., what are some negative
consequences of using AI with
biased data) and discuss
answers with a partner
followed by consolidation by
teacher.

Instructional Strategies for
Teaching Programming

Predict and Compare
Students predict the outcome
of a program/process and
compare with the actual
outcome.

Students predict the output of
a piece of code before running
it to assess their own
understanding.

Loksa’s Six-Step Approach
Students use Loksa’s approach
to solve programming
problems.

Students use a framework to
reinterpret a problem, then
draw upon their experience to
adapt a potential solution and
evaluate its effectiveness.

Making test cases
Students create their own test
cases (i.e., test data and
expected outputs).

Students verify their
understanding of the problem
requirements using test cases
before they start writing code.

Incremental testing
Students run and test their
code incrementally during
development.

Students run their code
iteratively after each small
part of the program is written
to catch errors early instead of
trying to debug a large amount
of untested code at once.

Debugging programs
Teachers provide buggy
programs for students to find
and correct the errors.

• Students identify and
correct the error(s) in a
buggy program, e.g., the
score in a game is not
updated properly.

• Students can use the
`Rubber Duck` method of
explaining their code line
by line to themselves to
identify the cause of error.

28

Table 6: Teaching Actions applicable to teaching of G3 Computing

Teaching Areas Teaching Actions Examples of how it can be used in the
classroom

Providing Clear
Explanation

Demonstration
Teachers demonstrate a ‘walk
through’ of a new skill during
which students learn by
observing.

• Teachers demonstrate a new skill (e.g.,
how to perform mail merge) to
students.

Model Thinking Aloud
Teachers make thinking visible
by verbalising and making
explicit their thinking so that
students can follow the
teachers’ thought processes.

• Teachers think out loud and verbalise
their thought processes (e.g., “Which
basic shapes are needed to create this
drawing?”, “Which backdrop should
appear if the player wins the game?”).

• Teachers step through a program line-
by-line to explain how each line of code
is executed (i.e., code tracing).

Using Questions to
Deepen Learning

Initiate-Response-Feedback
Chains
Teachers use questions to
elicit, probe and scaffold
students’ thinking.

• Teachers ask questions such as “What
makes you say that?” after students
have given a response to help students
identify the basis for their thinking as
they elaborate on the reasoning behind
their responses.

Encouraging Learner
Engagement

Explore, Engage, Apply
Teachers design learning
activities that are meaningful
and relevant to students.

• Use of kinaesthetic and unplugged
activities to explain computer or
programming concepts.

• Students can act out the actions
indicated in by a program script. This is
especially useful for scripts with motion
blocks.

Engagement through
Collaboration and
Interactivity
Teachers assign students to
work collaboratively in pairs.
One student (the driver) has
control of the keyboard and
mouse, while the other (the
navigator) looks at the big
picture and provides
comments. Students are to
switch roles from time to time.

• In pair drawing using a graphics
software, the driver creates the drawing
while the navigator provides feedback
(e.g., accuracy, proportionality of the
drawing objects).

• In pair programming, the driver writes
the program while the navigator
considers the requirements and checks
for errors.

Facilitating
Collaborative
Learning

Think-pair-share
Students first think through a
problem alone and then
discuss in pairs. This is

• Students consider possible solutions to
a theory question (e.g., how to take
proper care of computers) and discuss

29

Teaching Areas Teaching Actions Examples of how it can be used in the
classroom

followed by consolidation led
by teacher with the whole
class.

answers with a partner followed by
consolidation by teacher.

Instructional
Strategies for
Teaching
Programming

Predict and Compare
Students predict the outcome
of a program/process, and
compare with the actual
outcome.

• Students predict behaviour of a sprite
based on given scripts.

Debugging programs
Teachers provide buggy scripts
for students to find and
correct the errors.

• Students identify and correct the
error(s) in a buggy program, e.g., the
score in a game is not updated properly.

Performance Tasks

To provide meaningful assignments to reinforce and extend students’ learning, teachers could
use the following:

(a) Quick Checks are provided at the end of each section of the textbook to reinforce
concepts through short-answer questions. Teachers could use these to quickly check
for students’ understanding of that section.

(b) Worksheets are used to complement teaching. These could be used as classroom
activities where teachers can do together with their students.

(c) Review Questions are provided at the end of the chapter of the textbook to reinforce
and consolidate the concepts learnt in the chapter through structured questions.
Teachers could assign these after the teaching of a chapter has been completed.

(d) Student Learning Space leverage on the affordances of ICT to enhance students’
learning through simulations, games and videos.

(e) Each Mini Task consists of a few guided programming tasks with a real-world context.
Teachers could assign these tasks after the teaching of Algorithms and Programming
has been completed.

(f) Mini Projects are open-ended tasks carried out at the end of Secondary 3 over 6
weeks. The project will be based on authentic tasks founded on real-world problems.
There are 2 proposed implementations for the Mini Project – hardware-based or
software-based. In the hardware project, students program microcontrollers to
perform real-world tasks such as monitoring temperature within an area. In the
software project, students may program a game to move a sprite around to collect
tokens. See Table 7.

30

Table 7: Possible Mini Projects

Software-based

Pygame module Creation of simple games

Turtle module Creation of graphics and simple games

Numpy and Matplotlib modules Analysis and visualisation of data

Hardware-based

Raspberry Pi

Creation of simple maker projects (e.g., alarm clock)

Creation of simple games using the Pygame module
and Sense HAT (e.g., controlling game using rotation
sensor of Sense HAT)

Micro:bit
Creation of simple maker projects (e.g., counter, dice,
wireless messaging, pendulum oscillation counter)

Creation of simple games (e.g., catch game)

Software

The required software to be used in G3 Computing are listed in Table 8.

Table 8: Software requirements for G3 Computing

Module Software

Algorithms and Programming • JupyterLab Desktop

• Mu (for T&L only)

Spreadsheets • Microsoft Excel

Networking • Filius (for T&L only)

31

SECTION 4:
ASSESSMENT

Assessment for Computing

School-based Assessment
National Examination

32

4. ASSESSMENT

Assessment for Computing

Assessment is integral to the learning process and helps students become self-directed
learners. In this way, assessment is aligned to pedagogical approaches (as outlined in the
previous section), curricular objectives and content. Both school-based assessment and
national examinations play important and different roles in our education system.

Assessment is an important part of teaching and learning, and it is an ongoing process by
which teachers gather information about students’ learning to inform and support future
teaching. Assessment can be categorised into the following types:

• Formative Assessment, which can be incorporated into skill-building tasks, problem sets
and course projects, can be used to determine how students are progressing through
certain learning outcomes during a series of learning activities. Formative assessment can
be used to identify learning gaps and provide timely feedback to students on their learning
as well as inform teachers on planning for future instruction. Teachers should also create
opportunities for students to show that the feedback has enabled them to close their
learning gaps.

• Summative Assessment, such as class tests, school and national examinations, are used at
the end of a series of learning activities to determine the level of students’ attainment of
the desired learning outcomes. It is commonly used for placement and grading.

A balanced assessment system should have both formative and summative assessment.

School-based Assessment

School-based assessments provide opportunities for teachers to obtain information about
students’ level of competency and provide targeted feedback to their students. The adopted
pedagogies and resources developed by CPDD provide such opportunities by getting the
students to perform tasks that demonstrate their knowledge and skills.

The six weeks set aside for the programming project will enable students to collaborate and
learn from one another. Besides assessment for learning, assessment of learning also takes
place when students apply programming concepts and skills that they have learnt to the
project. Computational thinking would also be developed and if the project is done on a group
basis, students would also learn to explore different pathways to solutions and enhance
communication skills.

School-based summative assessment should consist of both written and practical
components. The written paper may comprise multiple-choice and short-structured
questions of variable marks. The practical paper may consist of a spreadsheet task and
multiple programming tasks.

The format of the assessment papers may also be modelled after the format of the national
examinations. The marks for school-based assessment may be used for reporting students’
performance at end of Semesters.

33

National Examination

Assessment Objectives

The examination will assess candidates’

AO1 Knowledge and understanding of core computing concepts, algorithms, techniques,

tools and related ethics

AO2 Application of knowledge and understanding to analyse and solve computing

problems

AO3 Design, development, testing and refinement of computing solutions

Students will handle and process data in computer systems and demonstrate their
understanding on ethical issues when dealing with data. They will demonstrate problem-
solving techniques through analysing and writing programming solutions for a range of
computing problems in a variety of contexts. Students will also demonstrate computational
thinking through the design and development of computing solutions.

Scheme of Assessment

All candidates will offer Paper 1 and Paper 2. All questions are compulsory in both papers.

Paper 1 (Written examination, 2 hours)
This paper will assess candidates’ knowledge, understanding and application of concepts
and skills in all the six modules. The questions consist of a mixture of:

• Multiple choice questions (single- and multiple-answer)

• Short-answer questions

• Matching questions

• Cloze passages

• Structured questions

Relevant formulae will be provided for candidates.

The paper carries 60% of the total marks and is marked out of 80 marks.

Paper 2 (Lab-based Examination, 2 hours 30 minutes)
This paper, taken with the use of a computer with access to a spreadsheet, Python and
JupyterLab software, will assess topics from the following modules:

• Spreadsheets

• Algorithms and Programming

A quick reference guide for Python will be provided for candidates.

34

Candidate will submit softcopies of the required work for marking. The allotted time
includes time for saving the required work in the candidates’ computer. This paper carries
40% of the total marks and is marked out of 70 marks.

Summary of details for each paper:

Paper Mode Duration Weighting Marks Format
Modules
Assessed

1 Written 2 h 60% 80 A mixture of

• Multiple choice
questions (single-
and multiple-
answer)

• Short-answer
questions

• Matching questions

• Cloze passages

• Structured
questions

All the five
modules

2 Lab-
based

2 h 30 m 40% 70 • One question on
Spreadsheets

• Four to five
questions on
Programming

Module 2:
Algorithms
and
Programming

Module 3:
Spreadsheets

Specification Table

Assessment Objectives Paper 1 Paper 2 Overall

AO1 Knowledge and Understanding ~30% 0% 30%

AO2 Application ~20% ~20% 40%

AO3
Development, testing and
refinement

~10% ~20% 30%

TOTAL 60% 40% 100%

Use of Calculator

An approved calculator may be used in Paper 1 and Paper 2.

35

Centre Infrastructure for Lab-Based Examination

The Centre will ensure adequate hardware and software facilities to support the
examination of its candidates for Paper 2, which will be administered over one shift on the
day of the examination. Each candidate should have the sole use of a personal computer for
the purpose of the examination. The candidates should be able to access spreadsheet and
programming software (Python and JupyterLab).

36

THIS PAGE IS

INTENTIONALLY

LEFT BLANK

